Sox17 is essential for the specification of cardiac mesoderm in embryonic stem cells.

نویسندگان

  • Yu Liu
  • Masanori Asakura
  • Hironori Inoue
  • Teruya Nakamura
  • Motoaki Sano
  • Zhiyv Niu
  • Michelle Chen
  • Robert J Schwartz
  • Michael D Schneider
چکیده

Early steps for cardiac specification are problematic for the study of mammalian embryos, which has favored using pluripotent cells that recapitulate cardiac myogenesis. Furthermore, circuits governing cardiac specification have relevance to the application of ES cells and other cells for heart repair. In mouse teratocarcinoma cells, canonical Wnts that inhibit heart formation in avian or amphibian embryos and explants activate cardiogenesis, paradoxically. Here, we show that the Wnt/beta-catenin pathway also is essential for cardiac myogenesis to occur in ES cells, acting at a gastrulation-like stage, mediating mesoderm formation and patterning (two prerequisites for cardiac myogenesis itself). Among genes associated temporally with this step was Sox17, encoding an endodermal HMG-box transcription factor. Using lentiviral vectors for RNA interference in differentiating ES cells, an essential role for Sox17 was proven in cardiac muscle cell formation. Sox17 short-hairpin RNA suppresses cardiac myogenesis selectively, acting subsequent to mesoderm formation yet before induction of Mesp1 and Mesp2, a pair of related basic helix-loop-helix transcription factors that together are indispensable for creating heart mesoderm. Sox17 short-hairpin RNA blocks cardiac myogenesis non-cell autonomously and impairs the induction of Hex, a homeodomain transcription factor that is known to be required for the production of endoderm-derived heart-inducing factors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hhex and Cer1 Mediate the Sox17 Pathway for Cardiac Mesoderm Formation in Embryonic Stem Cells

Cardiac muscle differentiation in vivo is guided by sequential growth factor signals, including endoderm-derived diffusible factors, impinging on cardiogenic genes in the developing mesoderm. Previously, by RNA interference in AB2.2 mouse embryonic stem cells (mESCs), we identified the endodermal transcription factor Sox17 as essential for Mesp1 induction in primitive mesoderm and subsequent ca...

متن کامل

Pancreatic Differentiation of Sox 17 Knock-in Mouse Embryonic Stem Cells in Vitro

The way to overcome current limitations in the generation of glucose-responsive insulin-producing cells is selective enrichment of the number of definitive endoderm (DE) progenitor cells. Sox17 is the marker of mesendoderm and definitive endoderm. The aim of the present research was to study the potential of Sox17 knock-in CGR8 mouse embryonic stem (ES) cells to differentiate into insulin produ...

متن کامل

HEMATOPOIESIS AND STEM CELLS ER71 specifies Flk-1 hemangiogenic mesoderm by inhibiting cardiac mesoderm and Wnt signaling

Two distinct types of Flk-1 mesoderm, hemangiogenic and cardiogenic, are thought to contribute to blood, vessel, and cardiac cell lineages. However, our understanding of how Flk-1 mesoderm is specified is currently limited. In the present study, we investigated whether ER71, an Ets transcription factor essential for hematopoietic and endothelial cell lineage development, could modulate the hema...

متن کامل

CITED2 Cooperates with ISL1 and Promotes Cardiac Differentiation of Mouse Embryonic Stem Cells

The transcriptional regulator CITED2 is essential for heart development. Here, we investigated the role of CITED2 in the specification of cardiac cell fate from mouse embryonic stem cells (ESC). The overexpression of CITED2 in undifferentiated ESC was sufficient to promote cardiac cell emergence upon differentiation. Conversely, the depletion of Cited2 at the onset of differentiation resulted i...

متن کامل

Facts about Stem Cells and Importance of Them

Stem cells are undifferentiated biological cells that can differentiate into specialized cells and can divide (through mitosis) to produce more stem cells. They are found in multicellular organisms. In mammals, there are two broad types of stem cells: embryonic stem cells, which are isolated from the inner cell mass of blastocysts, and adult stem cells, which are found in various tissues. In ad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 104 10  شماره 

صفحات  -

تاریخ انتشار 2007